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Abstract

At first sight, arguments for and against of the relativistic mass
notion look like a notorious intra-Lilliputian quarrel between Big-
Endians (those who broke their eggs at the larger end) and Little-
Endians. However, at closer inspection we discover that the relativis-
tic mass notion hinders understanding of the spirit of modern physics
to a much greater extent than it seems.

1 Introduction

Velocity dependent relativistic mass is still popular in teaching of relativity
and especially in popular literature. Several authors have criticized the use
of this historically outdated notion [1, 2, 3, 4, 5, 6, 7] while others find the
concept useful [8, 9, 10, 11, 12].

The usage of relativistic mass and “Einstein’s most famous equation E =
mc2” [13] was quite ubiquitous in old textbooks. So why should we bother? If
such renowned experts in the field as Tolman, Born and Fock in the past and
Penrose and Rindler today find the concept of relativistic mass useful why
not to follow the motto “All true believers break their eggs at the convenient
end” [14] instead of entering in an endless and arid dispute between Big-
Endians and Little-Endians?

The answer is simple. Modern physics offers a picture of reality which
is completely different from the classical Newtonian picture. It is impossi-
ble to master this kind of reality if you try to put it in a Procrustean bed of
Newtonian concepts. Nevertheless this is exactly what the modern education
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is trying to do. And not only in the realm of special relativity. “Most ele-
mentary textbooks and popularization works about quantum physics remain
plagued by archaic wordings and formulations” [15].

Modern civilization depends on advances in science more than ever before.
On the other hand the current practice of teaching does not cultivate the
conceptual critical thinking skills and is still oriented on the authoritarian
teaching traditions. Archaic concepts in teaching obscure vision of the world
offered by modern physics. “Upon failure to develop this vision, necessarily
critical, we can find ourselves in a world of machines, both physical and
intellectual, that would work fairly well, but we would not understand them
any more. This means that the progress of science is not guaranteed” [16].

Figure 1: Scientific progress is not guaranteed. Computers and Internet
not necessarily lead to higher level of progress if scientific knowledge is not
disseminated (the figure is from [16]).

The concept of mass in modern physics is quite different from the New-
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tonian concept of mass as a measure of inertia. However, this does not mean
that we should throw out mass as a measure of inertia. Simply modern
physics framework is more general and flexible and it explicitly indicates the
context under which it is fairly safe to consider the mass as a measure of
inertia. The problems begin when things are turned upside down and the
Newtonian physics is considered as a basic truth and modern physics as some
derivative from it. “Objectivity of Classical physics is some sort of half-truth.
It is a very good thing, a very great achievement, but somehow it makes it
more difficult than it would have seemed before to understand the fullness
of reality” [17].

In this note we outline the way how the concept of mass is introduced
in the modern physics and make it clear that this way leaves no room for
relativistic mass. This archaic concept is doomed to loose its role as a portal
in relativistic world if we want new generations to fully appreciate the benefits
of the twentieth-century scientific revolution.

Of course, no disrespect is implied by the title. It is a remake of the title
of Philip Anderson’s famous article ”Brainwashed by Feynman?” [18] and our
goal of using such a title is the same: just to sharpen reader’s attention to
a real problem. The problem here is that modern education lags far behind
the frontier of modern physics.

2 Landau & Lifshitz way of introducing mass

Okun remarks [19] that the first textbook in the world in which mass was
velocity-independent was “The classical theory of fields” by Landau and Lif-
shitz, first published in 1940. There was a good reason why Landau and
Lifshitz did not use relativistic mass: they had based their presentation on
the principle of least action. And this method leaves little room for relativis-
tic mass, or, rather, makes its use obsolete and unnecessary.

Indeed, let us consider a free relativistic particle. Landau and Lifshitz’s
reasoning goes as follows [20]. The action integral for this particle should
be independent on our choice of reference frame, according to the principle
of relativity. Furthermore, the integrand should be a differential of the first
order. A free particle can provide only one scalar of this kind - the interval
ds =

√
c2 dt2 − d!r 2. Therefore, for a free particle the expected form of the
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action is

S = −α

b
∫

a

ds = −αc

t2
∫

t1

√

1−
v2

c2
dt. (1)

Here c is the light velocity and the first integral is along the world line of the
particle, a and b being two particular events of the arrival of the particle at
the initial and final positions at definite times t1 and t2. α is some constant
and it must be positive lest the action become unbounded from below.

The physical meaning of the constant α becomes evident if we consider
the non-relativistic limit of the relativistic Lagrangian from (1):

L = −αc

√

1−
v2

c2
≈ α

v2

2c
− αc. (2)

This is equivalent to the non-relativistic Lagrangian L = mv2/2 if and only
if α = mc.

The way how the massm appeared in the relativistic Lagrangian indicates
clearly that it is an invariant quantity and does not depend on velocity. But
how about p = mv which is notoriously used to introduce relativistic mass?

Simply p = mv is a wrong way to define momentum. It is only true in
non-relativistic situations and is no longer valid when the particle velocity
approaches the velocity of light c.

The modern way to introduce momentum is the Noether theorem which
relates symmetries of a theory with its laws of conservation. In relativity, it
is better to deal with the time t and spatial coordinates xi on equal footing.
Therefore, we introduce a parametrization of the particle’s worldline

xi = xi(τ), t = t(τ),

where τ is some (scalar) evolution parameter, and rewrite the action of a
dynamical system as follows

S =

t2
∫

t1

L(xi, vi, t) dt =

τ2
∫

τ1

L

(

xi,
ẋi

ṫ
, t

)

ṫ dτ =

τ2
∫

τ1

L(xi, t, ẋi, ṫ) dτ, (3)

where

ẋi =
dxi

dτ
, ṫ =

dt

dτ
, vi =

dxi

dt
=

ẋi

ṫ
and L = L

(

xi,
ẋi

ṫ
, t

)

ṫ. (4)
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A symmetry of the action (3) is a transformation

xi → x′

i = xi + δxi, t → t′ = t+ δt, (5)

under which the variation of the Lagrangian can be written as a total deriva-
tive of some function F (xi, t, τ) with respect to the evolution parameter τ ,

δL =
dF

dτ
. (6)

If a dynamical system with action (3) has a symmetry defined by (5) and
(6), then the Noether’s current (Einstein summation convention is assumed)

J =
∂L
∂ẋi

δxi +
∂L
∂ṫ

δt− F (7)

is conserved. Indeed, using the Euler-Lagrange equations, which follow from
the principle of least action δS = 0,

d

dτ

(

∂L
∂ẋi

)

=
∂L
∂xi

,
d

dτ

(

∂L
∂ṫ

)

=
∂L
∂t

,

we get in light of (6)

dJ

dτ
=

∂L
∂xi

δxi +
∂L
∂t

δt+
∂L
∂ẋi

δẋi +
∂L
∂ṫ

δṫ−
dF

dτ
= δL− δL = 0.

Sometimes it is more convenient to express the conserved Noether current
in terms of the original Lagrangian L. Since,

L(xi, t, ẋi, ṫ) = L(xi, vi, t) ṫ,

where

vi =
ẋi

ṫ
,

we have
∂L
∂ẋi

= ṫ
∂L

∂vj

∂

∂ẋi

(

ẋj

ṫ

)

=
∂L

∂vi

and
∂L
∂ṫ

= L+ ṫ
∂L

∂vi

∂

∂ṫ

(

ẋi

ṫ

)

= L−
∂L

∂vi

ẋi

ṫ
= L− vi

∂L

∂vi
.
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Therefore, in terms of the original Lagrangian L, the Noether current takes
the form [21]

J =
∂L

∂vi
δxi −

(

vi
∂L

∂vi
− L

)

δt− F = pi δxi −H δt− F, (8)

where

pi =
∂L

∂vi
and H = vi

∂L

∂vi
− L (9)

are the desired general definitions of momentum and energy (Hamiltonian)
of the dynamical system (for non-relativistic Lagrangian L = mvivi/2, the
momentum takes its standard form pi = mvi and H = mvivi/2 = pipi/(2m)
is the kinetic energy).

It is now clear that the symmetry of the free relativistic particle action
(1) with respect to the infinitesimal space translations,

x′

i = xi + εi, t′ = t, F = 0

leads to the momentum conservation, while the symmetry with respect to
the infinitesimal time translation,

x′

i = xi t′ = t + ε, F = 0

implies the energy conservation.
From (9), using the relativistic Lagrangian

L = −mc2
√

1−
!v 2

c2
, (10)

we get the relativistic expressions for the energy and momentum

E =
mc2

√

1− "v 2

c2

, !p =
m!v

√

1− "v 2

c2

. (11)

It follows from these equations that

E2

c2
− !p 2 = m2c2. (12)

The equation (12) expresses the most important relativistic facet of mass: for
every free particle its energy-momentum four-vector has a fixed magnitude
mc.
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An interesting question, for some unknown reasons not usually discussed
in most classical mechanics textbooks, is what conserved quantity corre-
sponds to Lorentzian (and Galilean) boosts [22, 23, 24, 25, 26]. An infinites-
imal Lorentz boost in the x-direction

t′ = t−
ε

c2
x, x′ = x− εt, y′ = y, z′ = z

is the symmetry of the action (3) with F = 0. Therefore, the corresponding
Noether current implies the conserved quantity

pxt−
E

c2
x = const,

or in the vector form after the invariance with regard to the other two boosts
are also taken into account

!p t−
E

c2
!r = const. (13)

We get in fact a relativistic version of the Newton’s first law that a free
particle moves uniformly with constant velocity

!v =
!pc2

E
. (14)

“You aren’t used to calling this a conservation law, but it is, and in fact it is
the Lorentz partner of the angular momentum conservation law” [25].

3 Mass, cocycles and central extensions

Landau and Lifshitz’s argument is seductive but only half true. Let’s see
how they get the non-relativistic free particle Lagrangian [27]. Homogene-
ity of space and time implies that L must be independent of !r and t, so it
is a function of the particle’s velocity !v and in fact a function of its mag-
nitude only because the space is isotropic. Under the infinitesimal Galilei
transformations

x′

i = xi − εit, t′ = t, (15)

the Lagrangian L(v2) can get, at most, a variation which is a total time
derivative of some function of coordinates and time (that is Galilean boosts
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are symmetries of the corresponding action with possibly nonzero F ). But
under the Galilei boost (15)

v′i = vi − εi

and

δL =
dL

dv2
2viδvi = −2viεi

dL

dv2
.

This is a total time derivative if and only if dL
dv2

is a constant. Therefore, we
can write the Lagrangian as follows

L =
m

2
!v 2. (16)

Once again, the derivation makes it clear that the mass m is a Galilean
invariant quantity independent of velocity.

However, unlike the relativistic case, only quasi-invariance of the La-
grangian is required under Galilei transformations (that the variation of the
Lagrangian should be a total time derivative). Why such a difference? It is
not that we can not find the Lagrangian which is invariant under Galilean
transformations (15). We can. Just adding a total time derivative to the
Lagrangian (16) we get the Lagrangian L̃ which is evidently invariant under
the Galilean boosts [26]:

L̃ = L+
d

dt

(

−
m!r 2

2t

)

=
m

2

(

!v −
!r

t

)2

, (17)

Of course, L̃ explicitly depends on !r and t. But this fact, contrary to what is
claimed in [27], does not mean a violation of space-time homogeneity. Under
space-time translations

t′ = t+ τ, !r ′ = !r + !a

the variation of L̃ is

δL̃ =
d

dt

[

m

2

(

!r 2

t
−

(!r + !a)2

t+ τ

)]

.

Therefore, the Lagrangian L̃ is quasi-invariant under space-time translations
and this is sufficient to ensure space-time homogeneity.
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As we see, Landau and Lifshitz’s logic, while obtaining free particle La-
grangians in [20] and [27], contains loopholes. To close these loopholes, more
thorough investigation is needed [28] (see also [26, 29, 30]).

For notational simplicity, let q denotes a space-time point (t(s),!r(s)), and
let the Lagrangian L(q, q̇) be quasi-invariant with respect to the symmetry
group G. That is for any symmetry transformation g ∈ G, we have

L(gq, gq̇) = L(q, q̇) +
d

ds
α(g; q). (18)

The action

S(q1, q2) =

s2
∫

s1

L(q, q̇) ds, (19)

considered as a function of the trajectory end-points, transforms as follows

S(gq1, gq2) = S(q1, q2) + α(g; q2)− α(g; q1). (20)

Lévy-Leblond calls α(g; q) a gauge function. If this function has the form

α(g; q) = φ(q)− φ(gq) + χ(g), (21)

with some functions φ and χ, then we can choose a new equivalent action

S̃(q1, q2) = S(q1, q2) + φ(q2)− φ(q1)

which will be invariant under all symmetry transformations from G (this
follows simply from (20) and (21))

S̃(gq1, gq2) = S̃(q1, q2).

In this case the gauge function α(g; q) is said to be equivalent to zero. Of
course, two gauge functions are essentially the same (are equivalent) if their
difference is equivalent to zero. It is, therefore, convenient to fix the gauge
and choose one representative from each equivalence class with the property

α(g; q0) = 0 for any g ∈ G, (22)

where q0 denotes a conventional origin !r = 0, t = 0 in space-time (of course,
any point can be chosen as the origin, due to space-time homogeneity).
Such a representative always exists because if α(g; q0) &= 0, we choose as
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an representative an equivalent gauge function α̃(g; q) = α(g; q)−χ(g), with
χ(g) = α(g; q0).

The gauge functions have the following important property [28]. The
compatibility of

S(g1g2q1, g1g2q2) = S(q1, q2) + α(g1g2; q2)− α(g1g2; q1)

and

S(g1g2q1, g1g2q2) = S(g2q1, g2q2) + α(g1; g2q2)− α(g1; g2q1) =

S(q1, q2) + α(g2; q2)− α(g2; q1) + α(g1; g2q2)− α(g1; g2q1)

requires

α(g2; q1) + α(g1; g2q1)− α(g1g2; q1) = α(g2; q2) + α(g1; g2q2)− α(g1g2; q2).

That is the function

ξ(g1, g2) = α(g2; q) + α(g1; g2q)− α(g1g2; q) (23)

does not depends on the space-time point q.
Some elementary cohomology terminology will be useful at this point [31].

Any real function αn(g1, g2, . . . , gn; q) will be called a cochain. The action of
the coboundary operator δ on this n-cochain produces (n + 1)-cochain and
is determined as follows

(δαn)(g1, g2, . . . , gn, gn+1; q) =

αn(g2, g3, . . . , gn, gn+1; g
−1
1 q)− αn(g1 · g2, g3, . . . , gn, gn+1; q) + (24)

αn(g1, g2 · g3, g4, . . . , gn, gn+1; q)− αn(g1, g2, g3 · g4, g5, . . . , gn, gn+1; q) +

· · ·+ (−1)nαn(g1, g2, . . . , gn · gn+1; q) + (−1)n+1αn(g1, g2, . . . , gn; q).

The coboundary operator has the following important property

δ2 = 0. (25)

A cochain with zero coboundary is called a cocycle. Because of (25), every
coboundary αn = δαn−1 is a cocycle. However, not all cocycles can be
represented as coboundaries. Such cocycles will be called nontrivial.

In fact ξ(g1, g2) defined by (23) is a cocycle. Indeed, according to (24),

(δξ)(g1, g2, g3; q) = ξ(g2, g3)− ξ(g1g2, g3) + ξ(g1, g2g3)− ξ(g1, g2).

10



Substituting (23) into the first three terms, we get after some cancellations

ξ(g2, g3)− ξ(g1g2, g3) + ξ(g1, g2g3) = α(g2; g3q) + α(g1; g2g3q)− α(g1g2; g3q),

but this is just ξ(g1, g2), as the formula (23) is valid for any space-time point
q, and in particular for the point p = g3q. Therefore, (δξ)(g1, g2, g3; q) = 0
and ξ(g1, g2) is a global (independent on a space-time point q) cocycle.

In the following we will assume the gauge fixing (22). Then (23) with
q = q0 gives

ξ(g1, g2) = α(g1; g2q0). (26)

From this relation the following two properties of the admissible cocycles
follow. First, if the gauge function α(g; q) is equivalent to zero, then ξ(g1, g2)
is a trivial cocycle. Indeed, let

α(g; q) = φ(q)− φ(gq) + χ(g),

Then α(g; q0) = 0 condition gives

χ(g) = φ(gq0)− φ(q0)

and, therefore,

ξ(g1, g2) = φ(g2q0)− φ(g1g2q0) + φ(g1q0)− φ(q0). (27)

On the other hand, if we take (a global) 1-cochain β(g) = φ(gq0) − φ(q0),
then its coboundary

(δβ)(g1, g2) = β(g2)− β(g1g2) + β(g1)

just coincides with the r.h.s. of (27). Therefore, ξ = δβ and hence it is a
trivial cocycle.

The second property of the admissible cocycle is that if h ∈ Γ belongs
to the stabilizer Γ of the point q0, so that hq0 = q0, then ξ(g, h) = 0 for all
g ∈ G. Indeed, this is evident from (26) and our gauge fixing condition (22).

If the symmetry group G acts transitively on space-time (in fact, in this
case the space-time can be identified with the homogeneous space G/Γ [28]),
then for any point q there exists such a symmetry gq that

q = gqq0. (28)
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Let ξ(g1, g2) be some admissible cocycle, that is such that ξ(g, h) = 0 for all
g ∈ G and h ∈ Γ. Then the formula

α(g; q) = ξ(g, gq) (29)

defines a gauge function such that α(g; q0) = 0. Indeed, first of all α(g; q)
is defined by (29) for admissible cocycles uniquely despite the fact that gq is
defined by (28) only up to stabilizer transformation, for any h ∈ Γ we have

ξ(g1, g2h) = (δξ)(g1, g2, h) + ξ(g1, g2) + ξ(g1g2, h)− ξ(g2, h) = ξ(g1, g2).

Then, using ggq = ggqh for some h ∈ Γ, we can easily check that

α(g2; q) + α(g1; g2q)− α(g1g2; q) = (δξ)(g1, g2, gq) + ξ(g1, g2) = ξ(g1, g2).

The only question that remains is whether the equivalent admissible co-
cycles can lead to nonequivalent gauge functions. The answer, in general,
turns out to be affirmative [28].

Let ξ′(g1, g2) and ξ(g1, g2) are two equivalent admissible cocycles, so that

ξ′(g1, g2) = ξ(g1, g2) + ζ(g2)− ζ(g1g2) + ζ(g1).

The admissibility conditions ξ′(g, h) = ξ(g, h) = 0, if h ∈ Γ, produces a
restriction on the cochain ζ(g):

ζ(gh) = ζ(g) + ζ(h), for any g ∈ G and h ∈ Γ. (30)

In particular, (30) shows that h → ζ(h) is a one-dimensional representation
of the subgroup Γ.

The gauge functions α′(g; q) and α(g; q) defined by these cocycles are
related as follows

α′(g; q) = α(g; q) + ζ(g) + ζ(gq)− ζ(ggq).

Note that ggq = ggqh with some h ∈ Γ (in fact, h = g−1
gq ggq). Therefore, in

light of (30), we have

α′(g; q) = α(g; q) + ζ(g) + ζ(gq)− ζ(ggq)− ζ(h),

or
α′(g; q) = α(g; q)− ζ(g−1

gq ggq) + φ(q)− φ(gq) + χ(g),

12



with φ(q) = ζ(gq) and χ(g) = ζ(g). As we see, α′(g; q) is equivalent to the
gauge function

α̃(g; q) = α(g; q)− ζ(g−1
gq ggq) = ξ(g, gq)− ζ(g−1

gq ggq). (31)

Suppose the representation ζ of Γ can be extended to the representation ω
of the whole group G. Then we will have

ζ(g−1
gq ggq) = ω(g−1

gq ggq) = ω(g) + ω(gq)− ω(ggq),

and
α(g; q) = α̃(g; q) + φ(q)− φ(gq) + χ(g),

with φ(q) = ω(gq) and χ(g) = ω(g). Therefore, α and α̃ are equivalent.
However, if the representation ζ can not be extended on G, then α̃(g; q)

and α(g; q) gauge functions are essentially different (not equivalent).
In fact, formula (31) makes it possible to explicitly construct all different

gauge functions related to the symmetry group G. All what is needed is
to find all non-trivial two-cocycles of G and all non-trivial one-dimensional
representations of the stabilizer subgroup Γ which can not be extended on G
[28].

In relativistic classical mechanics, the symmetry group G is the Poincaré
group and the stabilizer subgroup Γ is the (homogeneous) Lorentz group.
However, the Poincaré group has no non-trivial two-cocycles [32, 33] and the
Lorentz group has no non-trivial one-dimensional representations. Therefore,
all gauge functions, related to the Poincaré group are equivalent to zero and
we conclude that it was quite safe for Landau and Lifshitz to assume strictly
invariant relativistic action integral.

In non-relativistic case matters are somewhat more complicated. Now G
is the Galilei group with elements g = (τ,!a,!v, R) and it acts on the space-
time points q = (t,!r) as follows

gq = (t+ τ, R!r − !vt+ !a), (32)

where R symbolically denotes the rotation matrix. The stabilizer subgroup
Γ is the homogeneous Galilei group with elements g = (0, 0,!v, R). As in
the relativistic case, Γ has no non-trivial one-dimensional representations.
However, the full Galilei group G has a non-trivial two-cocycle discovered by
Bargmann [32]. Bargmann’s cocycle may be chosen in the form [28]

ξ(g1, g2) = m

(

1

2
!v 2
1 τ2 − !v1 · R1 !a2

)

, (33)
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where m is an arbitrary real number.
Possible gauge functions for the Galilei group are uniquely specified by

the equivalence classes of the Bargmann cocycle that is by the number m.
We can take gq = (t,!r, 0, 1), because gqq0 = q with q0 = (0, 0) and q = (t,!r).
Therefore, in accordance with (31), we obtain

α(g; q) = ξ(g, gq) = m

(

1

2
v2t− !v · R!r

)

(34)

Then we get the following most general transformation law of the Lagrangian
under Galilei symmetries

L(gq, gq̇) = L(q, q̇) +m

(

1

2
v2ṫ− !v · R!̇r

)

, (35)

where gq is given by (32) and

gq̇ = (ṫ, R!̇r − !vṫ). (36)

Choosing g = g−1
q = (−t,−!r, 0, 1), we get

L(q0, q̇) = L(q, q̇).

Therefore, L does not depend on !r and t, as was assumed by Landau and
Lifshitz. But now we have a rigorous justification why we can make such a
choice without loss of generality in spite of quasi-invariance of the Lagrangian.

Hence L(q, q̇) = L(ṫ, !̇r) and we can rewrite (35) as follows

L(ṫ, R!̇r − !vṫ) = L(ṫ, !̇r ) +m

(

1

2
v2ṫ− !v · R!̇r

)

. (37)

For !v = R!̇r/ṫ, we get (note that (R!̇r)2 = !̇r2)

L(ṫ, 0) = L(ṫ, !̇r )−
m

2

!̇r 2

ṫ
. (38)

The Lagrangian L is a homogeneous function of first degree in the ṫ and !̇r
derivatives (see (4)). Therefore, L(ṫ, 0) = E0ṫ, where E0 is some arbitrary
constant, and from (38) we get the most general form (up to equivalence) of
the Lagrangian compatible to the Galilei symmetry

L(ṫ, !̇r) = E0ṫ +
m

2

!̇r 2

ṫ
. (39)
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Taking s = t, so that ṫ = 1 and !̇r is the particle velocity, we recover the
standard result

L(ṫ, !̇r) = E0 +
m

2

(

d!r

dt

)2

. (40)

The rest energy E0 which appears in (40) has no real significance in classi-
cal mechanics and can be omitted from (40) without changing equations of
motions. Note however, that the way how this rest energy was introduced in
the theory indicates that E0 has no relation with the mass m of the particle.
In non-relativistic physics (or more precisely, in Galilei invariant theory),
E0 and m are two unrelated constants characterizing the particle (E0 being
insignificant as far as the classical mechanics is concerned).

Only in relativity E0 and m proved to be related by Einstein’s famous
E0 = mc2 formula, as (11) indicates (in fact, it was Max Laue who produced
the first general correct proof of this relation in 1911 for arbitrary closed
static systems, generalized by Felix Klein in 1918 for arbitrary closed time-
dependent systems [34]).

Interestingly, we can get a strictly invariant Lagrangian if we enlarge the
configuration space of the system by introducing just one additional real
variable θ. Indeed, let us consider the Lagrangian

L̃ = L− θ̇. (41)

It is obviously invariant upon transformations

q′ = gq, θ′ = θ + α(g; q), (42)

because

L(q′, q̇′) = L(q, q̇) +
d

ds
α(g; q).

Unfortunately, transformations (42) do not form a group.

g1[g2(q, θ)] = (g1g2q, θ + α(g2; q) + α(g1; g2q)) =

(g1g2q, θ + α(g1g2; q) + ξ(g1, g2)) &= (g1g2)(q, θ) = (g1g2q, θ + α(g2; q)).

As we see, the presence of the ξ(g1, g2) cocycle makes it impossible to define
the multiplication law g1 ' g2 because g1[g2(q, θ)] &= (g1g2)(q, θ).

However, there is a simple way out. The Lagrangian (41) is obviously
invariant under transformations

q′ = q, θ′ = θ +Θ1, (43)
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with some constant Θ1. Let us combine the transformations (42) and (43) in
the following way

(g,Θ)(q, θ) = (gq, θ +Θ+ α(g; q)). (44)

Then g1[g2(q, θ)] = (g1g2)(q, θ) condition requires the following multiplication
law

(g1,Θ1)' (g2,Θ2) = (g1g2, Θ1 +Θ2 + ξ(g1, g2)). (45)

It can be checked that in this case the cocycle condition

ξ(g2, g3) + ξ(g1, g2g3) = ξ(g1, g2) + ξ(g1g2, g3)

helps to ensure the associativity of the multiplication law (45) and the set of
the (g,Θ) pairs, G̃, indeed form a group, the inverse element being

(g,Θ)−1 = (g−1, −Θ− ξ(g, g−1)).

Note that G is not a subgroup of G̃. Instead, G is isomorphic to the factor-
group G̃/R, where R is the Abelian group of transformations (43) (identical
to the additive group of real numbers). It is said that G̃ constitutes a cen-
tral extension of G. Central extensions play an important role in physics,
especially in quantum physics [26, 35].

4 Mass and quantum theory

Although the classical theory, considered above, is completely sufficient to
demonstrate our main point that the modern way of introducing mass makes
it clear that it can not depend on velocity neither in Galilei nor in Poincaré
invariant theory, the real basis of modern physics is quantum theory.

Through the Feynman path integral formalism, the quantum theory ex-
plains the appearance of the least action principle in classical theory [36].
Therefore, “there is no longer any need for the mystery that comes from
trying to describe quantum behaviour as some strange approximation to the
classical behaviour of waves and particles. Instead we turn the job of explain-
ing around. We start from quantum behaviour and show how this explains
classical behaviour” [37].

Unfortunately, modern education completely ignores this possibility and
still speaks about “wave-particle duality” and “the complementarity princi-
ple” as a philosophical bases to fuse the two apparently contradictory ideas
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of classical particles and classical waves into a quantum concept. The follow-
ing example [38] shows that such educational practice distorts the scientific
integrity even of professional physicists. In his critique of the customary
interpretation of quantum mechanics, Landé indicated the following para-
dox [39]. It seems the de Broglie relationship between the momentum and
wavelength

p =
h

λ
contradicts the principle of relativity because the momentum does depend on
the choice of the reference frame while the wavelength does not. An amusing
fact, according to Levý-Leblond [38], is that nowadays experimentalists in
neutron optics have difficulties to grasp Landé’s paradox. They know quite
well, as firmly established experimental fact, that the wavelength λ is re-
lated to the momentum p by de Broglie’s λ = h/p and it does change from
one inertial frame to the other. Why is then Landé claiming that λ is an
invariant? Recovered from the “wave-particle duality” dichotomy by their
professional experience, they missed to appreciate a simple fact, as the crux
of the Landé’s argument, that “in classical wave theory, λ indeed is an invari-
ant: the crest-to-crest distance of sea waves is the same to an aircraft pilot
and to a lighthouse keeper” [38]. They simply do not understand why this
classical property of waves has any relation to quantum objects they study.

Although Landé’s paradox has some interesting aspects related to clas-
sical special relativity [40], it is not a real paradox in quantum theory [41]
and originates only if we still insist on the schizophrenic classical view of the
quantum world that a quantum particle somehow manages to be simultane-
ously both a particle and a wave while in reality it is neither particle nor
wave [42]. Simply “it must be realized today that this view of the quantum
world, adapted as it was to its first explorations, is totally out-dated. In
the past fifty years, we have accumulated sufficient familiarity, theoretical as
well as experimental, with the quantum world to no longer look at it through
classical glasses” [39].

Mathematically the Landé’s paradox is the following. Wave function of a
free non-relativistic particle (for simplicity, we will assume ! = 1) Ψ(!r, t) =
exp {i(Et− !p · !r)} is not invariant under Galilei boosts

t′ = t, !r ′ = !r − !v t, !p′ = !p−m!v, E ′ = E − !p · !v +
mv2

2
.

That is Ψ′(!r′, t′) &= Ψ(!r, t), where Ψ′(!r, t) = exp {i(E ′t− !p ′ · !r)}. This is of
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course true, but from the point of physics the strict invariance is not at all
required. What is really required is

Ψ′(!r ′, t′) = eiα(g;"r,t) Ψ(!r, t). (46)

The phase factor α(g; q) is not completely arbitrary. Let us make a closer
look at conditions it must satisfy. Consider a sequence of Galilei boosts

q → g2q → g1(g2q). (47)

If we write (46) as
Ψ′(q) = eiα(g;q) Ψ(g−1q), (48)

then we get for this sequence (47):

Ψ′′(q) = eiα(g1;q) Ψ′(g−1
1 q) = ei[α(g1;q)+α(g2;g

−1

1
q)]Ψ(g−1

2 g−1
1 q). (49)

We can state that the transformation (48) consistently realizes the invari-
ance with regard to the Galilei boosts if the wave function (49) is physically
indistinguishable from the wave function

Ψ̃′′(q) = eiα(g1g2;q) Ψ((g1g2)
−1q), (50)

associated to the direct q → (g1g2)q transition. Physical indistinguishability
means that the transition amplitudes are the same:

Ψ′′(q2)[Ψ
′′(q1)]

∗ = Ψ̃′′(q2)[Ψ̃
′′(q1)]

∗ (51)

for any two space-time points q1 and q2. Substituting (49) and (50) into (51),
we get that the combination

ξ(g1, g2) = α(g2; g
−1
1 q)− α(g1g2; q) + α(g1; q) (52)

must be independent on the space-time point q. Note that

ξ(g1, g2) = (δα)(g1, g2; q).

Therefore ξ(g1, g2) is locally trivial cocycle, but globally it is not necessarily
trivial, that is, representable as the coboundary of a global cochain (this is
just the case for the Galilei group, as we shall see soon).
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The Landé paradox will be resolved if we show that de Broglie plane
waves really induce a global cocycle (52). Let us write (48) for de Broglie
plane waves

exp {−i(E ′t− !p ′ · !r)} = eiα(g;q) exp {−i[Et− !p · (!r + !v t)]}.

Then we get

α(g; q) = −
mv2

2
t−m!v · !r, (53)

and we can check that
ξ(g1, g2) = 0

for any two pure Galilei boosts g1 and g2. As we see, the phase factor (53)
in (46) resolves the Landé paradox.

In fact ξ(g1, g2) is the Bargmann cocycle (33) [43]. This can be shown as
follows. Repeating the above reasoning for the general transformations from
the Galilei group

gq = (t+ τ, R!r − !v t+ !a),

g−1q = (t− τ, R−1(!r + !v t− !a− !v τ)), (54)

(g1g2)q = (t+ τ1 + τ2, R1R2!r − (!v1 +R1!v2)t+ !a1 +R1!a2 − !v1τ2),

we get

α(g; q) = −
mv2

2
(t− τ)−m!v · (!r − !a)− E ′τ + !p ′ · !a. (55)

Only the first two terms are relevant because the last two terms give a func-
tion of group parameters only (independent on !r and t) and therefore lead to
a globally trivial cocycle when substituted into (52). Keeping only the first
two terms in (55) and taking into account (54), we get after some algebra

α(g2; g
−1
1 q)− α(g1g2; q) + α(g1; q) =

m

2
v21 τ2 −m!v1 · R1!a2,

which is just the Bargmann cocycle (33).
The way we have obtained it shows that the Bargmann cocycle is lo-

cally trivial (is the coboundary of the local cochain α(g; q)). However, it
is globally nontrivial. Indeed, any globally trivial cocycle, having the form
β(g2)− β(g1g2) + β(g1), is symmetric in g1 and g2 on Abelian subgroups. It
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follows from (54) that elements of the form (0,!a,!v, 1) (space translations and
Galilean boosts) form an Abelian subgroup:

(0,!a1,!v1, 1) · (0,!a2,!v2, 1) = (0,!a1 + !a2,!v1 + !v2, 1).

However, the Bargmann cocycle remains asymmetric on this Abelian sub-
group, ξ(g1, g2) = −m!v1 · !a2, and, therefore, it can not be a trivial cocycle.
Moreover, the same argument indicates that different values of mass define
not equivalent Bargmann cocycles because their difference, being asymmetric
on the Abelian subgroup of space translations and Galilean boosts, is not a
trivial cocycle. As we see, in non-relativistic physics, the mass of the parti-
cle has a cohomological origin, it parametrizes the central extensions of the
Galilei group.

In non-relativistic physics, the mass is a primary concept and it is im-
possible to explain why only some central extensions of the Galilei group
are realized as elementary particles. Relativity brings a big change in the
conceptual status of mass. Einstein’s E0 = mc2 “suggests the possibility
of explaining mass in terms of energy” [44]. In fact, Quantum Chromody-
namics already explains the origin of mass of most constituents of ordinary
matter [45]. However, “our understanding of the origin of mass is by no
means complete. We have achieved a beautiful and profound understanding
of the origin of most of the mass of ordinary matter, but not of all of it. The
value of the electron mass, in particular, remains deeply mysterious even in
our most advanced speculations about unification and string theory. And
ordinary matter, we have recently learned, supplies only a small fraction of
mass in the Universe as a whole. More beautiful and profound revelations
surely await discovery. We continue to search for concepts and theories that
will allow us to understand the origin of mass in all its forms, by unveiling
more of Nature’s hidden symmetries” [44].

5 Concluding remarks

V. A. Fock once remarked that “the physics is essentially a simple science.
The main problem in it is to understand which symbol means what” [46]. As
we have seen above, the meaning of the symbol m which enters in Newton’s
!F = m!a equation is more profound than the primary Newtonian “measure of
inertia”. Unfortunately, the modern education ignores all the twentieth cen-
tury’s achievements in deciphering this symbol and bases its exposition on the
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classical Newtonian physics as it was formed at the end of the nineteenth cen-
tury, with only fragmentary and eclectic inclusions from the modern physics.

Not that classical physics is wrong and useless. Classical physics is a great
achievement of humankind and fully deserves our admiration. At the end of
their excellent book on classical mechanics [47], Sudarshan and Mukunda
wrote “Classical mechanics is an eternal discipline, where harmony abounds.
It is beautiful in the true sense of the term. It is new every time we grow
and look at it anew. If we have conveyed a sense of awe and adoration to
this eternal beauty, our labor is worthwhile”.

But all the sparkling beauty of Classical Physics can manifest itself only
when it is placed in a right framework of modern ideas. Archaic notions and
concepts in education, like relativistic mass, not only hinder understanding
of modern physics but also they make it impossible to truly appreciate the
meaning of classical ideas and the context under which classical ideas are
completely sound and operational.

Of course we are not talking about the terminology. If you like to have
a special name for the combination mγ, or you feel that the relativistic
mass will help a Newtonian intuition of your students to better understand
some relativistic circumstances, no problem, go ahead and use it. It is the
philosophy of teaching which is at stake. Let me try to explain by allegory.

α

Figure 2: A student as a mountain climber.

Scientific progress needs an educated society and society has its special
means to promote its members to higher level of education. A student under
his/her search of higher education is like a mountain climber who wishes to
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climb up a frictionless conical mountain (see the figure. This nice mountain
climber problem is from David Morin’s superb textbook of introductory clas-
sical mechanics [48]). The aim of teaching was to give the student a lasso (a
rope with a loop) and explain him/her how to use it. After sufficient teaching
the student throws the lasso over the top of the mountain and climbs it up
along the rope.

At the beginning the education was very much an elitist affair and stu-
dents were given elitist deluxe lasso (see the figure).

Figure 3: Deluxe lasso of nineteenth century education.

Deluxe lasso was quite effective till twentieth century and with it many
famous scientists climbed up the icy mountain of contemporary science and
furnished the glorious building of classical physics at the end of the nineteenth
century. Educational standards were quite high, sometimes even unreason-
ably high and competitive. A good example is Cambridge Mathematical
Tripos examinations, “a high speed marathon whose like has never been seen
before or since” [49]. The examination lasted eight days and total number of
questions was about two hundred. The results of examination were the sub-
ject of a great deal of public attention. The first man was called the Senior
Wrangler followed by other Wranglers, the candidates awarded a first-class
degree. Next came Senior Optimes, the candidates awarded a second-class
degree, followed by Junior Optimes, the third class men. The procedure
was quite cruel, some kind of Darwinian natural selection at work, as the
following examples illustrate.

C. T. Simpson, the Second Wrangler in 1842, had worked twenty hours a
day for a whole week before the examination and during the Tripos he almost
broke down from overexertion [50].
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James Wilson, the Senior Wrangler in 1859, experienced a severe mental
and physical breakdown immediately after the examination. It took three
months him to recover from the illness and after the recovery he found that he
had forgotten utterly all the mathematics that he had learned at Cambridge
apart from elementary algebra and Euclid [50, 51].

No wonder that the deluxe lasso became more and more ineffective at the
beginning of twentieth century with its drastic change both in society and
science. Then the cheap democratic lasso was invented (see the figure).

Figure 4: Democratic lasso of twentieth century education.

For decades the democratic lasso worked quite well and today we have
the Standard Model and Large Hadron Collider. However, it seems even
the democratic lasso becomes ineffective in our postmodern society. In fact,
a gradual decrease of culture and intelligence is a long standing problem.
Already Ludwig Wittgenstein, an Austrian philosopher, wrote in 1930 (cited
in [52]): “I realize that the disappearance of a culture does not signify the
disappearance of human value, but simply of certain means of expressing
this value, yet the fact remains that I have no sympathy for the current of
European civilization and do not understand its goals, if it has any. So I
am really writing for people who are scattered throughout the corners of the
globe”.

It will be helpful to understand why lassos cease to be effective. It is
just a simple mathematical exercise after the main physical essence of the
problem is grasped [48]. The key to this problem is to realize that in the
absence of friction the rope’s tension ensures that the path of the lasso’s loop
on the cone’s surface must be a geodesic (a nice discussion of geodesics on
the cone’s surface can be found in [53]). The cone’s surface is flat. Let us cut
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it along a straight line joining the peak and the knot P of the lasso, and roll
the cone flat onto a plane. We will get a sector of a circle and the lasso’s loop
will be represented by a straight line PP on this sector (after the cutting and
rolling, the point P will appear at both sides of the involute of the cone at
equal distances from the tip).

β

PP

A

BB

Figure 5: The involute of the cone and the path PP of the lasso’s loop on it.

The deluxe lasso is one continuous piece of rope. Therefore, at the knot
all three pieces of the rope will have the same tension and we need the angles
between them to be 120◦ for the tensions to balance themselves. Hence the
angle between PP and PB is 120◦, the triangle APP is equilateral and
β = 60◦. What this means for the angle α of the cone? Let AB = l, then
the radii of the cone’s base is r = l sinα/2. We have two expressions for
the arc-length L of BB. From the one hand, L = βl. On the other hand,
L = 2πr = 2πl sinα/2 is the circumference of the cone’s base. Equating
these two expressions, we get

sin
α

2
=

β

2π
. (56)

If β = π/3, then sin (α/2) = 1/6 and α ≈ 19◦. Therefore, only in the
special circumstances of the nineteenth century can the deluxe lasso work.
It becomes useless then these circumstances change.

For the democratic lasso the angle between PP and PB is no longer
constrained and it will always work unless the involute of the cone is greater
than a semicircle. β < 180◦ implies sin (α/2) < 1/2 and α < 60◦. This
explains why the democratic lasso worked quite well in spite of changing
conditions during the twentieth century.
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But now, I’m afraid, the conditions both in society and science changed
so drastically that we have α > 60◦. Therefore, the old lasso based education
practise will no longer work irrespective how hard we try.

Modern education can no longer be based on Newton’s laws and Newto-
nian concepts as primary building blocks. The progress in science was too
great. Quantum mechanics and special relativity are cornerstones of modern
physics. It is of crucial importance the modern education to be based on
basic principles of these disciplines from the very beginning. Newton’s laws
and Newtonian concepts should be introduced as derivatives from these more
profound theories, as they really are, and the limitations of the Newtonian
concepts must be clearly stressed.

Without such a deep modernization of education, we will face a risk that
the number of quasi-educated people will increase while the number of re-
ally intelligent people will decrease. We are already watching an alarming
proliferation of irrationality and ignorance worldwide. A very clear explana-
tion why such a situation is dangerous was given by Carlo Maria Cipolla, an
Italian economic historian.

According to Cipolla [54], human beings fall into four basic categories:
the helpless, the intelligent, the bandit and the stupid. If Tom takes an action
and suffers a loss while producing a gain to Dick, Tom acted helplessly. If
Tom takes an action by which he makes a gain while yielding a gain also to
Dick, Tom acted intelligently. If Tom takes an action by which he makes a
gain causing Dick a loss, Tom acted as a bandit. If Tom causes losses to Dick
or to a group of persons while himself deriving no gain and even possibly
incurring losses, he is a stupid person.

“Whether one considers classical, or medieval, or modern or contempo-
rary times one is impressed by the fact that any country moving uphill has
its unavoidable σ fraction of stupid people. However the country moving
uphill also has an unusually high fraction of intelligent people who manage
to keep the σ fraction at bay and at the same time produce enough gains
for themselves and the other members of the community to make progress a
certainty.

In a country which is moving downhill, the fraction of stupid people is
still equal to σ; however in the remaining population one notices among those
in power an alarming proliferation of the bandits with overtones of stupidity
and among those not in power an equally alarming growth in the number
of helpless individuals. Such change in the composition of the non-stupid
population inevitably strengthens the destructive power of the σ fraction
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and makes decline a certainty. And the country goes to Hell” [54].
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